Core Mathematics 3 Paper C

1. The region bounded by the curve $y=x^{2}-2 x$ and the x-axis is rotated through 360° about the x-axis.

Find the volume of the solid formed, giving your answer in terms of π.
2. (i) Solve the equation

$$
\ln (3 x+1)=2
$$

giving your answer in terms of e.
(ii) Prove, by counter-example, that the statement

$$
" \ln \left(3 x^{2}+5 x+3\right) \geq 0 \text { for all real values of } x "
$$

is false.
3. Differentiate each of the following with respect to x and simplify your answers.
(i) $\ln (3 x-2)$
(ii) $\frac{2 x+1}{1-x}$
(iii) $x^{\frac{3}{2}} \mathrm{e}^{2 x}$
4. (i) Given that $\cos x=\sqrt{3}-1$, find the value of $\cos 2 x$ in the form $a+b \sqrt{3}$, where a and b are integers.
(ii) Given that

$$
2 \cos (y+30)^{\circ}=\sqrt{3} \sin (y-30)^{\circ}
$$

find the value of $\tan y$ in the form $k \sqrt{3}$ where k is a rational constant.
5. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}(x) \equiv x^{2}-3 x+7, \quad x \in \mathbb{R} \\
& \mathrm{~g}(x) \equiv 2 x-1, \quad x \in \mathbb{R}
\end{aligned}
$$

(i) Find the range of f .
(ii) Evaluate $\operatorname{gf}(-1)$.
(iii) Solve the equation

$$
\begin{equation*}
\operatorname{fg}(x)=17 \tag{4}
\end{equation*}
$$

6. (i) Express $4 \sin x+3 \cos x$ in the form $R \sin (x+\alpha)$ where $R>0$ and $0<\alpha<\frac{\pi}{2}$.
(ii) State the minimum value of $4 \sin x+3 \cos x$ and the smallest positive value of x for which this minimum value occurs.
(iii) Solve the equation

$$
4 \sin 2 \theta+3 \cos 2 \theta=2
$$

for θ in the interval $0 \leq \theta \leq \pi$, giving your answers to 2 decimal places.
7.

The diagram shows the graph of $y=\mathrm{f}(x)$ which meets the coordinate axes at the points $(a, 0)$ and $(0, b)$, where a and b are constants.
(a) Showing, in terms of a and b, the coordinates of any points of intersection with the axes, sketch on separate diagrams the graphs of
(i) $y=\mathrm{f}^{-1}(x)$,
(ii) $y=2 \mathrm{f}(3 x)$.

Given that

$$
\mathrm{f}(x)=2-\sqrt{x+9}, \quad x \in \mathbb{R}, \quad x \geq-9
$$

(b) find the values of a and b,
(c) find an expression for $\mathrm{f}^{-1}(x)$ and state its domain.
8. The curve C has the equation $y=\sqrt{x}+\mathrm{e}^{1-4 x}, x \geq 0$.
(i) Find an equation for the normal to the curve at the point $\left(\frac{1}{4}, \frac{3}{2}\right)$.

The curve C has a stationary point with x-coordinate α where $0.5<\alpha<1$.
(ii) Show that α is a solution of the equation

$$
\begin{equation*}
x=\frac{1}{4}[1+\ln (8 \sqrt{x})] . \tag{3}
\end{equation*}
$$

(iii) Use the iterative formula

$$
\begin{equation*}
x_{n+1}=\frac{1}{4}\left[1+\ln \left(8 \sqrt{x_{n}}\right)\right], \tag{2}
\end{equation*}
$$

with $x_{0}=1$ to find x_{1}, x_{2}, x_{3} and x_{4}, giving the value of x_{4} to 3 decimal places.
(iv) Show that your value for x_{4} is the value of α correct to 3 decimal places.
(v) Another attempt to find α is made using the iterative formula

$$
\begin{equation*}
x_{n+1}=\frac{1}{64} \mathrm{e}^{8 x_{n}-2}, \tag{2}
\end{equation*}
$$

with $x_{0}=1$. Describe the outcome of this attempt.

