Core Mathematics 3 Paper C 1. The region bounded by the curve $y = x^2 - 2x$ and the x-axis is rotated through

 360° about the *x*-axis.

Find the volume of the solid formed, giving your answer in terms of π .

[5]

2. *(i)* Solve the equation

$$ln(3x + 1) = 2$$

giving your answer in terms of e.

[2]

(ii) Prove, by counter-example, that the statement

"
$$\ln (3x^2 + 5x + 3) \ge 0$$
 for all real values of x"

is false.

[5]

3. Differentiate each of the following with respect to x and simplify your answers.

(i)
$$\ln(3x-2)$$
 [2]

$$(ii) \quad \frac{2x+1}{1-x}$$

(iii)
$$x^{\frac{3}{2}}e^{2x}$$
 [3]

- Given that $\cos x = \sqrt{3} 1$, find the value of $\cos 2x$ in the form $a + b\sqrt{3}$, 4. where a and b are integers. [3]
 - (ii) Given that

$$2\cos(y+30)^{\circ} = \sqrt{3}\sin(y-30)^{\circ}$$

find the value of $\tan y$ in the form $k\sqrt{3}$ where k is a rational constant. [5] 5. The functions f and g are defined by

$$f(x) \equiv x^2 - 3x + 7, \quad x \in \mathbb{R},$$

$$g(x) \equiv 2x - 1, x \in \mathbb{R}.$$

- (i) Find the range of f. [3]
- (ii) Evaluate gf(-1). [2]
- (iii) Solve the equation

$$fg(x) = 17.$$
 [4]

- 6. (i) Express $4 \sin x + 3 \cos x$ in the form $R \sin (x + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$. [3]
 - (ii) State the minimum value of $4 \sin x + 3 \cos x$ and the smallest positive value of x for which this minimum value occurs. [3]
 - (iii) Solve the equation

$$4\sin 2\theta + 3\cos 2\theta = 2,$$

for θ in the interval $0 \le \theta \le \pi$, giving your answers to 2 decimal places. [4]

Turn over

7.

The diagram shows the graph of y = f(x) which meets the coordinate axes at the points (a, 0) and (0, b), where a and b are constants.

(a) Showing, in terms of a and b, the coordinates of any points of intersection with the axes, sketch on separate diagrams the graphs of

(i)
$$y = f^{-1}(x)$$
, [2]

(ii)
$$y = 2f(3x)$$
. [3]

Given that

$$f(x) = 2 - \sqrt{x+9}, x \in \mathbb{R}, x \ge -9,$$

- (b) find the values of a and b, [3]
- (c) find an expression for $f^{-1}(x)$ and state its domain. [4]
- **8.** The curve C has the equation $y = \sqrt{x} + e^{1-4x}$, $x \ge 0$.
 - (i) Find an equation for the normal to the curve at the point $(\frac{1}{4}, \frac{3}{2})$. [4]

The curve C has a stationary point with x-coordinate α where $0.5 < \alpha < 1$.

(ii) Show that α is a solution of the equation

$$x = \frac{1}{4} [1 + \ln(8\sqrt{x})].$$
 [3]

[2]

(iii) Use the iterative formula

$$x_{n+1} = \frac{1}{4} [1 + \ln(8\sqrt{x_n})],$$

with $x_0 = 1$ to find x_1, x_2, x_3 and x_4 , giving the value of x_4 to 3 decimal places. [2]

- (iv) Show that your value for x_4 is the value of α correct to 3 decimal places. [2]
- (v) Another attempt to find α is made using the iterative formula

$$x_{n+1} = \frac{1}{64} e^{8x_n-2}$$
,

with $x_0 = 1$. Describe the outcome of this attempt.